Solar Power Basics and Step-by-Step Guide to Building One

Share this!

INTRODUCTION
UNLIMITED POWER!

Welcome to my guide on solar power system basics. This is where we will walk through the basics of a solar energy system, and how to put them together step-by-step. It sounds scary and complicated, but once you have some hands-on, it really is not that bad.

I have built my own simple setup for about US$300, and I am absolutely loving it now – free charging for my phone and free power for running the lights at night. It has definitely saved me some money, and will continue to do so for years to come. So whenever you are ready, let’s dive into building one of these awesome rigs for yourself.

 

CONFESSION
AN HONEST DISCLOSURE

Quick, hide your wallets!

There are affiliate links and advertisements on this page! Whenever you buy things from the evil links that I recommend, I will make a commission.

Nah. These are just things to keep the blog going, and allows me to give more good stuff to you guys. So thank you if you decide to pick up my recommendations!

 

 

NAVIGATION
TABLE OF CONTENTS


Section A
Why Solar?

Section B
Overview

Section C
Considerations

Section D
How to Build

Section E
Recommendations

Closing
Go Green

 

 

SECTION A
WHY SOLAR? IS IT GOOD ENOUGH?

Yes I know, there are so many objections whenever it comes to solar energy. It is expensive, it does not produce enough power, and it breaks easily. To smash some of those myths:

  • Solar panels will work as long as there is direct sunlight. Even on cloudy days, and when it is raining.
  • They are getting cheaper over the years, due to mass production and better technology.
  • Solar panels are attached to satellites and launched into space. They will last for a good 30-50 years when maintained properly.
  • They may not produce as much energy as a nuclear power plant, but the efficiency is improving.
  • Cities all around the world are quickly adopting solar power.

If you are still not sure about solar technology, check out the Solar Impulse – Solar energy is already mature enough to power an airplane. Personally, I think that solar will become the next game changer. They are affordable – so much that you can buy and build your own power rig. Expand on it, and you can kiss the electricity bills goodbye.

 

 

SECTION B
SYSTEM OVERVIEW

What do we need to build a solar system? Will it cost a bomb? Do we need to know how to build a rocket? No worries, solar systems are actually pretty simple. Ignore the bad people who tell you solar is dangerous, they obviously work for the power company and want you to stay in debt.

When it comes to a raw basic skeleton solar setup, you only have to know 4 components. No rocket science needed, no need to break your piggy bank.

  • Solar Panels: Convert direct sunlight to electricity.
  • Battery: To store the electricity for the night.
  • Charge Controller: To regulate the charging process, and prevent the battery from being over-charged.
  • Inverter: This is optional if you want a “wall plug” from your solar system. We shall touch more on this later in the guide.

 

SOLAR PANELS

The fabled technology that turns light into power. While most people only know them as “solar panel”, there are currently 3 common types of solar panels.

MONOCRYSTALLINE SOLAR PANELS

The oldest and most energy efficient of the 3 technologies. As the name suggests, the solar cells are made with a single continuous crystal structure. It involves some complicated crystal growth process and thus making these pretty expensive.

POLYCRYSTALLINE SOLAR PANELS

The slightly newer technology, where solar cells are made with a large block of many crystals instead of one continuous piece. This results in less wastage, and thus less expensive. While it is generally less efficient, technology is quickly catching up and poly-crystal solar panels are quickly becoming the “cheaper better” technology.

AMORPHOUS SOLAR PANELS

This is the youngest technology among the three, and it is basically a thin layer of silicon over metal or glass. The thin film solar panel is the cheapest to manufacture, flexible, ultra-portable, but also the least efficient.

 

BATTERIES

Solar panels will only work when there is sun, and thus we need batteries to store energy for the night. I am sure we are all already familiar with AA and AAA batteries. But for solar systems, we use the slightly bigger batteries.

SEALED LEAD ACID (SLA)

The most traditional form of “heavy duty” battery that is used in cars, golf carts and airplanes. In a nutshell, this is acid sealed inside a lead casing. Very heavy to be carrying around, but is also pretty much bullet proof.

ABSORBANT GLASS MAT (AGM)

A slight improvement over SLA batteries by using a thin piece of fiberglass mat to absorb the acid, and relying less on a lead casing. While lightens the battery a little, it is still essentially acid inside a box.

GEL BATTERY

One of the safest batteries that I prefer to use. GEL batteries as the name implies, do not use liquid-based acids, but a gel based one. So even if the casing breaks, nothing is going to spill.

DEEP CYCLE

More like a character than a type of battery. All batteries take damage when they are over charged-and-discharged. Deep cycle batteries can take more punishments, and thus preferred over the “normal” batteries.

LITHIUM

Lithium batteries are commonly used in smartphones, tablets, and laptops these days. The ones used for solar systems are a little larger though. Lithium batteries have an edge over traditional acid batteries in terms of capacity and weight. They don’t spill acid either. But… they explode when punctured. Handle these with care.

AA BATTERY

The common Joe battery. Nobody has ever tried using these for solar systems, but they do work… It’s just that AA batteries cannot survive the heavy charge-discharge cycles.

 

CHARGE CONTROLLERS

Can we just use solar panels to directly charge batteries? The answer is yes, but that is very risky. There is no way we can tell if the battery is already fully charged, and overcharging batteries usually end up badly.

So this is why we need a charge controller. To stop charging when the battery is full, and to stop discharging when the battery is low. The charge controller basically acts as a safety device to prevent disasters and to extend the lifespan of your batteries.

PULSE WIDTH MODULATION (PWM)

PWM controllers are the time-proven good old reliables. They are generally simple, cheaper and not meant for heavy-duty uses.

MAXIMUM POWER POINT TRACKING (MPPT)

MPPT controllers are more intelligent and heavy duty than PWM controllers. Basically, they do the magic of self-optimizing whatever solar array you throw at it. As you can guess, these toys cost a lot more than PWM.

 

INVERTER

For a basic solar setup, the above 3 components will suffice. But before you get too happy, there is something that you need to know.

  • The power we get from the solar setup is direct current (DC).
  • The power we get from wall plugs is alternative current (AC).

Which means, you simply cannot plug your house appliances directly into a basic solar setup. If you want to use your “usual electronics” with the solar setup, you will need a fourth component called an inverter, which converts DC to AC.

As to why are there 2 “types” of power? Well, this is history between Thomas Edison and George Westinghouse. I am not going into the details, but you can read the war of the currents if you are interested.

 

SECTION C
CONSIDERATIONS BEFORE BUILDING

Before you build the masterpiece, you need to have a plan. Nope, planning is not about wasting time and being a smart aleck. It is about what you need, buying the correct stuff, and not spending too much money on things that you don’t need.

 

CHOOSE A SOLAR PANEL

When it comes to choosing solar panels, there are several considerations:

  • Which type of solar panel?
  • What voltage?
  • What wattage? (Measured in watts, the higher the number, the more power the solar panel produces)
  • How many to get?

Each solar panel technology has its own pros and cons. If you just want a small portable solar charger for your phone or tablet, the thin film makes sense. Otherwise, for general home use, go for monocrystalline or polycrystalline solar panels. As for the voltage, it’s simple.

  • 6v if you just want to charge USB devices.
  • 12v for regular setups.
  • 24v for heavy duty setups.

Lastly, for the wattage and how many to get, some experts like to throw numbers. But for me, I go with the simplest instinct – How much space and budget do you have? If you have space to deploy and budget to burn, just splurge on big solar panels. If not, start small, and you can expand the system in the future anyway.

 

WHICH BATTERY?

Choosing a battery (or batteries) is just like choosing a solar panel.

  • Which type of battery?
  • The voltage of the battery.
  • The capacity of the battery.  (Measured in ampere hour, the higher the number, the more power the battery can store)
  • How many batteries?

There are many kinds of batteries as we discussed above, and note that every kind of battery is different. Personally, I like to go with GEL batteries as they are probably the safest. Lithium holds a lot of power, but they explode when mishandled.

As for the voltage, I like to keep things simple again. 12v batteries to 12v panels, and 24v batteries to 24v panels. There should be no confusion over this one. But personally, I like to go with 12v systems because many car and boat accessories run on 12v; You can just buy these accessories and plug them directly into your solar setup.

Lastly, for the capacity and number of batteries, there is some unavoidable simple calculation. Let’s say that I have a solar panel that produces 5 amperes of power on the average. So with a good solid 8 hours of sunlight, I will need a 40AH (8 hrs X 5 ampere) battery to optimize the power storage.

Of course, if you are lazy with calculations, you can always start with buying one huge battery first. If your solar panel array is producing way too much power, get more batteries to expand it.

 

WHICH CONTROLLER?

Lastly, you will need to choose a charge controller. Which are just 2 questions :

  • PWM or MPPT? If you are looking at a large solar setup (now or in the near future), it will make sense to invest in an MPPT charge controller right off the bat. If not, PWM will do the job just fine.
  • What are the maximum voltage and current (ampere) that the controller can handle? You do not want to plug a 64V battery into a rated 12V controller… nor do you want to burn a rated 20 amperes controller with 100 amperes of solar power.

Generally, if you are looking for a small and affordable setup, just go with the PWM. If not, get an MPPT to cater for future expansions. If you plan on using PWM controllers, note that the voltage of the solar panel and battery must match. I.E. If you buy a 12V battery, the solar panel must be 12~18V.

 

INVERTER

The optional component if you want to use household electronics. This is simple. Get a small 1000w inverter for light-weight systems, get a 10000w for heavy usage. One thing you should be aware though – inverters are inefficient. Use car accessories and DC lights if you can.

 

SECTION D
HOW TO BUILD

So now we know all about solar panels, batteries, charge controllers, and inverters. But how do we put them together into a system? How do we design one, and what are the tools that we need?

 

DISCLAIMER & SAFETY MESSAGE

A word of warning before we actually start. While it might be green technology, you are still dealing with electricity here. Please take the necessary precautions and safety measures. When in doubt, always consult a trained professional.

Red Dot Geek only serves to provide information, we will not be held responsible for damages, loss, personal injuries, or death that resulted thereafter. Build this project at your own risk.

 

TOOLS YOU WILL/MAY NEED

We are not going to build a system with rocks and sticks. These are the tools that you might need, and just to make your life a lot easier. Reminder, these are referral links from eBay and I will get a small commission when you buy from these links; It helps to keep this blog alive. 🙂

Crimp/Cutter Tool [Link] A convenient tool to cut wires and crimp connectors together. You can also get this from a hardware store, or work around with a pair of scissors and pliers.
Wires [Link] Do your own estimation and get however much you need to stretch out your system. Take note that American Wire Gauge (AWG) is a commonly used standard to denote how thick a piece of wire is. The smaller the number, the thicker it is. For light usage, AWG 14-16 should be sufficient. For heavy duty systems, go for AWG 10 or smaller.

A word of warning – Don’t try to cut costs by getting those thin pieces of wires. If you pass too much electricity through a thin piece of wire, it will catch on fire. Definitely not worth it to endanger your own life.

MC4 Connectors [Link] Most modern solar panel will have a male/female MC4 connector attached to it “by default”. So at the bare minimum, you are going to need another pair of male/female MC4 connector to tap the solar power. If you want to join multiple solar panels together, you are going to need the MC4 splitters.
Soldering Iron [Link] You can actually get this in any hardware store, but I will just leave the link here. For you guys who are lazy to solder, you can probably just twist 2 pieces of wires together and tape them shut.
Electric Tape [Link] The one thing you can’t live without.
Heat shrink tube [Link] Another recommended convenient cheapy for lazy people who do not want to solder. Put on the heat shrink tubing, twist 2 pieces of wire together, then shrink them shut with a hairdryer.

 

THE COMPONENTS

Solar Panels [LINK] The heart of the system, and I leave it up to you on how many to get. As for the recommendation, I started with a single 18v 100w semi-flexible solar panel. Yes, I used an 18v panel to charge a 12v battery. If you have the sun, space and budget, feel free to get more.
Charge Controllers [PWM] [MPPT] There are plenty of cheap PWM options on eBay, but beware when purchasing MPPT on eBay. An MPPT can easily cost from USD60 to even thousands. If you see one going for like, USD10-20, something is wrong. Some of those bad sellers don’t even know the difference between PWM and MPPT. If you need a recommendation, go for the cheap-and-decent EPEver (previously EPSolar) MPPT controller.
Batteries [LEAD ACID] Take note that some countries might have import restrictions on batteries. Importing batteries from eBay may not be the best idea, and the shipping is can be expensive. Your best bet to get batteries is from an auto supplies store or a gas station. Recommendation, I started with a 40AH GEL battery. Good enough to power a long LED light strip, and charge my phone. Get bigger batteries if you want.
Inverter Please check the rating of the inverter before buying one. Depending on where you are, the wall plugs might supply 110v or 220v. Get the proper voltage and not fry your electronics. [1000w] for light usage, [5000w] medium usage, and [10000w] if you run a mini solar power plant.

 

STEP 1: WIRE THEM BATTERIES TOGETHER (IF YOU HAVE MULTIPLE BATTERIES)

If you have purchased multiple batteries, you will need to wire them together first. If not, keep this as knowledge for the future. There are two ways to connect your batteries together – parallel and series.

  • Series connection: Wire the + terminal of one battery to the – terminal of the other battery.
  • Parallel connection: Wire all the + terminals together, then wire all the – terminals together.
  • In a series connection, the voltage stacks but capacity remains. E.g. If you put 4 X 12v 100AH batteries in series, they will act like a single 48v 100AH battery.
  • In a parallel connection, the voltage remains the same but capacity “combines”. E.g. If you put 4 X 12v 100AH batteries in parallel, they will act like a single 12v 400AH battery.

So which connection to use? Normally, it will be in parallel. But if you want to “convert” your 12v batteries into 24v, just wire a pair of them in series.

Safety note: Please do not handle the battery, wires or electronics with wet hands. Especially touching the – terminal with one hand, and + terminal with another hand. This may cause the electricity to pass right through the heart and is potentially fatal.

Safety note: Please do not touch 2 bare terminal wires together (one wired to -, and the other to +). This may cause sparks to fly and cause a fire. It’s fun to watch, but not fun to get burnt.

 

STEP 2: WIRE THEM PANELS TOGETHER (IF YOU HAVE MULTIPLE PANELS)

Next stop, wire the panels together if you have decided to get multiple panels. Remember the series/parallel from 30 seconds ago? Yep, it’s the same with solar panels.

  • When wired in series, the voltage stacks up. E.g. Wiring a pair of 12v solar panels in series will act like a single 24v solar panel.
  • When wired in parallel, the current stacks up. E.g. Wiring a pair of 12v 100w solar panels in parallel will act like a single 12v 200w solar panel.

So series or parallel again? It’s up to you, but parallel is the easier way out. There is a good reason to use series though, and that is to stack up the voltage. In some shady places, solar panels don’t exactly produce enough power. When the voltage falls short, it will not charge the battery.

Which is why some people prefer to use 24v (or even more) solar panels to charge 12v batteries; The other way around is to connect the panels in series to stack the voltage. This however, will require you to have a charge controller that can handle a higher input voltage.

 

STEP 3: CONNECT BATTERY TO CHARGE CONTROLLER

On the charge controller, there should be at least 6 terminals – check your user’s manual. 2 of them should go to the battery, 2 of them goes to the solar panels, and the final pair to whatever you want to run from the batteries (lights, fans, etc…) This part should be dead easy. Just connect the battery to the correct terminals on the charge controller (plus to plus, minus to minus).

The charge controller should power up when you put the batteries in correctly.

 

STEP 4: CONNECT SOLAR PANEL TO CHARGE CONTROLLER

Next, connect the solar panels to the charge controller. The same thing again, plus to plus, minus to minus.

The charge controller should indicate that the batteries are charging when plugged in correctly… and of course, when there is enough sun.

 

STEP 5: LOAD IT UP!

That’s it, you now have the sweet power of the sun stored in a battery. But I am sure you did not buy an entire solar setup to store energy and not use it. How we tap the power is very simple. Remember – to -, + to +? Remember series and parallel. It’s the same thing again, rig your devices in parallel, the plug them into the “load” terminals of the controller.

For those who are curious what happens if you put your gadgets in series – The first gadget will get all the juice, then the rest of the gadgets gets progressively less power and will not run properly.

Safety note: It is a good idea to have some kind of a “master switch” to shut down the whole system. Put some fuses in as protection as well.

Safety note: If you have decided to go with a 24V battery, do not plug 12V devices directly into the system. Chances are, you are going to fry the 12v gadget. Use a voltage step-down (see recommendations below).

 

SECTION E
RECOMMENDATIONS

All right! If you have walked through all the above steps, you should have a fully functional solar rig. Here are a few recommendations on 12V gadgets that you can directly stick into a 12V system, and of course, for the people who are lost, you can get the same parts as my starter rig.

 

MY STARTER RIG

Here are the parts of my starter rig. It charges smartphones, tablets, power banks, and runs LED light strips… Don’t expect too much, but it works.

Just these 3 main components, and if you don’t stretch out too much on the wiring, it should cost about US$300.

 

12V ACCESSORIES

Here are a few of the “good stuff” that you can directly plug into a 12V system. In fact, if you buy a car plug, you can even use your existing car accessories.

 

CLOSING
GO BIG, GO GREEN!

Congratulations on finishing this long guide. If you have constructed your own solar rig, welcome to the club! I am sure it is satisfying to watch the rest of the world curse at paying more electricity bills, while we just shrug.

For you guys who live in a city and still wondering if solar makes sense, yes it does. As long as you have a sunny window or balcony, it will work. Just imagine having a small solar setup to charge your phone, power bank, and light a small room for years – just how much will this save you?

Solar panels will work as long as there is direct sunlight.

So if you are still wondering, just get started with it now, and enjoy the fruits of your labor. Cheers!

 

Main Menu Next: Grow Your Own Food


Share this!

Related posts

Leave a Comment